Applications and Implementation Working Group

Blackmon/McNabb ~ Co-chairs

```
➤ Potential Applications
> Astrophysics
    >rp process: (p,\gamma)
    \ggp process: (\gamma,n), (\gamma,\alpha)
    \ggs process: (n,\gamma)
    \ggr process: (n,f), (n,\gamma)
>Stockpile stewardship
    >Radiochemical flux monitors: (n,\gamma), (n,2n), (n,p)
    \rightarrowActinides: (n,f),(n,\gamma)
    \gg Fission fragments: (n,\gamma), (n,2n)
>ATW, Criticality, etc.
    ➤ Actinides: (n,xnf)
>Nuclear structure
```

The rp process and (p,γ) reactions

➤ Proton-rich nuclei near the proton drip line

 \gg Novae: E_p < 2 MeV & A<40

 \gg X-ray bursts: E_p < 4 MeV & A<105

>Low level density

- **➣**Isolated resonances
- ➤ Transfer reactions are well-established technique to resolved states
- ➤ Shell model and R-matrix are theoretical workhorses

➤ High level density

- >HF rates are used
- \gg Detailed comparisons of HF to (p,γ) near stability and shell model rates have been performed
- ➤ Can improvements be made in HF rates (e.g. better level densities)? Could measurements of surrogate reactions to unresolved states help?

➤ Intermediate level density

- >HF not reliable, but difficult experimentally to resolve experimentally resolve states: e.g. 72 Br(p, γ) 73 Kr Q=5.1 MeV
- > Surrogate reactions may be an important tool for improving reaction rates in this regime

Supernovae

>> p process

- **>**Low abundance
- **≫**Proton-rich nuclei
- >74Se- 196 Hg
- \gg (γ ,a) and (γ ,n
- ➤ Reactions on excited states
- ➤HF rates are used
- *>*Low-energy αN optical model
- >(n, α) used ~ other surrogates?

>r process

- \gg Masses, half-lives, P_n most important
- ➤Studies of neutron-rich nuclei (structure) important for improving models
- ➤ Fission is potentially very important, models only beginning to incorporate.
- ➤ Need fission model (probability and mass distribution) with predictive power.
- >(n, γ) rates can redistribute matter during freezeout
 - ➤ Low level density: Surrogate reactions (e.g. d,p)
 - ➤ High level density: HF rates (level densities, isospin & parity dependence)

s process branch points

Isotope	Half-life	RIA intensity (10 ⁹ pps)
⁷⁹ Se	1.1x10 ⁶ y	20
⁸⁵ Kr	10.7 y	80
⁸⁶ Rb	19 d	800
⁸⁹ Sr	50 d	1
⁹⁴ Nh	2x10 ⁴ y	1
¹⁰³ Ru	39 d	1
¹⁰⁶ Ru	367 d	5
¹¹⁰ Δα	250 d	10
115Cd	44 d	90
¹¹⁴ In	50 d	90
¹²¹ Sn	50 y	120
¹²³ Sn	130 d	150
¹²⁴ Sb	60 d	1
¹²⁵ Sb	2.8 y	3
¹²⁷ Te	109 d	1
129 T $_{f \Box}$	34 d	20
133 y	5.2 d	200
¹³⁴ Cs	2.1 y	2000
135	2x10 ⁶ y	3000
141	33 d	500
¹⁴³ Pr	14 d	800
¹⁴⁷ Nd	11 d	80
¹⁴⁷ Pm	2.62 y	80
¹⁵¹ Sm	90 y	10

L		
Isotope	Half-life	RIA intensity
		(10 ⁹ pps)
¹⁵³ Sm	1.9 d	20
¹⁵² Eu	13 y	40
154Eu	8.6 y	30
¹⁵⁵ Eu	4.9 y	4
¹⁵³ Gd	241.6 d	20
¹⁶⁰ Tb	72 d	1
¹⁶³ Ho	4570 y	400
¹⁶⁹ Fr	9.4 d	30
¹⁷⁰ Tm	128.6 d	100
¹⁷¹ Tm	1.92 y	100
¹⁷⁷ Lu	6.7 d	1
¹⁷⁹ Ta	1.7 y	1
¹⁸¹ Hf	42 d	30
¹⁸² Hf	9x10 ⁶ y	10
¹⁸² Ta	114 d	1
¹⁸⁵ W	75.1 d	2
¹⁸⁶ Re	2.0 y	1
¹⁹¹ Os	15 d	2
¹⁹² lr	74 d	1
¹⁹³ Pt	50 y	1
¹⁹⁸ Au	2.7 d	1
²⁰³ Hg	47 d	100
²⁰⁴ TI	3.77 <u>y</u>	1
²⁰⁵ Pb	1.5x10 ⁷ y	1

- $>(n,\gamma)$ MACs
- \gg 8 and 30 keV
- ➤Branch points (radioactive!) extremely important
- ➤DANCE will measure some ~ but *very* difficult
- ➤ Alternate technique (surrogate reaction) needed
- ➤One would like accurate (10%) measurements

Stockpile stewardship needs

- ➤ Radiochemical tracers
 - >>Ti,Cr,Fe,Br,Kr,Y,Zr,Nb,Mo,Tm,Lu,Ta,Ir,Au,Bi
- **≫**Actinides
- **>**Prompt fission fragments
- >Sensitivity studies with reaction rate networks may help set priorities

Reaction	Energy Range (MeV)	Importance	Accuracy
(n,γ)	0.01- 0.2	High	10%
(n,n')	1-10	Low	10%
(n,2n)	10-16	High	3-5%
$(n,pX),(n,\alpha)$	0.1-16	Medium	10%
(n,f)	0.1-16	High	1-2%

Low energy (n,γ)

- ➤ Very important for both stewardship science and the s process
- ➤ Presentations by Bernstein, Dietrich are encouraging, but much work to do
- ➤ Challenges:
 - ➤ Need to probe narrow energy window near the neutron threshold
 - ➤ Energy resolution >> level spacing
 - ➤ What energy resolution is required?
 - ➤ Need to characterize detector response function accurately.
- ➤ Need to thoroughly investigate test cases on lighter nuclei
- ➤ Is there useful existing data?

Test cases

- ➤ How much meaning can be inferred from a test case?
- ➤ A variety of test cases with different dependences is desirable.
- \gg How problematic is angular momentum matching? Do angular distributions help in constraining the J^{π} distribution in the compound nucleus?
- ➤ How much can measuring multiple channels help?

$^{151}\mathrm{Sm}(\mathrm{n},\mathrm{y})$

- ➤Important s process branch point
- \gg (n, γ) will be measured

$$>S_n = 8.3 \text{ MeV}$$

>152Sm(p,p') >154Sm(p,t)

 \gg ¹⁵⁰Sm(t,p) \gg ¹⁵³Eu(t, α)

(n, xn yp zα) needs

- ➤ High accuracy(3-5%) desired
 - ➤But we'll take what we can get
- ➤ Energies are typically 5-15 MeV
- >Only moderate energy resolution (100 keV) required
- Most interesting cases are when several channels are competing for the reaction cross section
 - **>**Fission & (n,n') & (n,2n)
 - >(n, n') & (n, p) & (n,2n)

$(n, xn yp z\alpha)$ issues

- >> Helps to constrain the reaction cross section
 - ➤ How good is a global optical model?
 - ➤ What measurements can improve?
- ➤ How do you identify the channel of interest.
 - ➤ Gammas are positive but can you understand cascade scheme?
 - ➤ Neutrons more direct? Gd-doped scintillators?
- >Contributions from direct reactions, pre-equilibrium
 - ➤ Particle distributions give us a probe
- \gg Higher beam energies required to populate equivalent 5-14 MeV neutrons compared with (n, γ)

Neutron-induced fission

- ➤ General consensus: Walid's talk was an example to live up to
 - >Comparisons with solid benchmarks from direct measurements
 - ➤ Addressed angular momentum matching issues
- New issues at higher energies (pre-equilibrium, more reliance on models) limitations still to be explored
- \gg (n,xnf) at high energies of interest for ATW, criticality, etc.

Conclusions and general comments

- ➤ There are significant nuclear data needs not met by direct measurement.
- >Surrogate techniques seem promising for obtaining some of this data.
- ➤ A substantial body of test cases needs to be measured and evaluated to build confidence in the applicability and precision.
 - ➤ Results will depend on mass region, shell structure, level density. Test cases need to be matched to nuclei of interest.
- ➤ Where are we going to do these measurements?
 - ➤ Can sufficient beam time and manpower be devoted to this effort?
 - **>**Throughput?
- ➤ How much information is to be gained from previous work?
 - >Important to capitalize on the lessons learned from the substantial work in previous decades, ala Walid.
- ➤ Can significant improvements be made in model inputs?
 - **>**Level densities
 - **>**Isospin dependences
 - **>**Parity dependences
- >Can studying surrogate reactions help improve the predictive power of theory where is no data?